Micromachined calibration chip with heat source and temperature sensors for Scanning Thermal Metrology (SThM)

نویسندگان

  • E. Lemaire
  • T. P. Nguyen
  • A. Bontempi
  • L. Thiery
  • D. Teyssieux
  • P. Vairac
  • H. Shea
  • D. Briand
چکیده

The monitoring of heat flux is becoming more and more critical for many technologies approaching nanometric dimensions. Scanning Thermal Microscopy (SThM) is one of the tools available for thermal measurement at the nanoscale. This measurement technics needs calibration samples. Therefore, micro-hotplates made of platinum heater suspended on thin silicon nitride (SiN) membranes were fabricated for the calibration of Scanning Thermal Microscopy probes. The objective is to obtain heated reference samples with localised resistive temperature sensors (RTD) on the membrane to probe the temperature on a micro-scale area (typically 10x10 μm). This sensing area is dedicated to (1) quantify the thermal resistance between the SThM tip and hot surface contact; and to (2) evaluate the perturbation induced by the probe on the heat dissipation when the contact measurement is performed. In this communication, we report on the thermal design of low-power calibration chip and their fabrication, as well as the electro-thermal characterization of sensitive RTDs made using e-beam technology. Thermal contact measurements using a thermocouple based SThM probe validated the functionality of the calibration chip. © 2015 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the organizing committee of EUROSENSORS 2015.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantification of probe-sample interactions of a scanning thermal microscope using a nanofabricated calibration sample having programmable size.

We report a method for quantifying scanning thermal microscopy (SThM) probe-sample thermal interactions in air using a novel temperature calibration device. This new device has been designed, fabricated and characterised using SThM to provide an accurate and spatially variable temperature distribution that can be used as a temperature reference due to its unique design. The device was character...

متن کامل

Direct observation of optical near field in nanophotonics devices at the nanoscale using Scanning Thermal Microscopy.

In recent years, following the miniaturization and integration of passive and active nanophotonic devices, thermal characterization of such devices at the nanoscale is becoming a task of crucial importance. The Scanning Thermal Microscopy (SThM) is a natural candidate for performing this task. However, it turns out that the SThM capability to precisely map the temperature of a photonic sample i...

متن کامل

Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes.

We present an experimental proof of concept of scanning thermal nanoprobes that utilize the extreme thermal conductance of carbon nanotubes (CNTs) to channel heat between the probe and the sample. The integration of CNTs into scanning thermal microscopy (SThM) overcomes the main drawbacks of standard SThM probes, where the low thermal conductance of the apex SThM probe is the main limiting fact...

متن کامل

[1011] Scanning Thermal Microscopy on 2D Materials at cryogenic temperatures

Thermal transport in Graphene is of great interest due to its high thermal conductivity, for both fundamental research and future applications such as heat dissipation in electronic devices. Although, the thermal conductivity of graphene can reduce depending on the coupling to the substrate [1]. In this work, we report high-resolution imaging of nanoscale thermal transport in single and few lay...

متن کامل

Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes

We have designed and batch-fabricated thin-film thermocouple cantilever probes for scanning thermal microscopy ~SThM!. Here, we report the use of these probes for imaging the phonon temperature distribution of electrically heated carbon-nanotube ~CN! circuits. The SThM images reveal possible heat dissipation mechanisms in CN circuits. The experiments also demonstrate that heat flow through the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015